Processing math: 100%
Subalgebra B12+A21B14
38 out of 48
Computations done by the calculator project.

Subalgebra type: B12+A21 (click on type for detailed printout).
Subalgebra is (parabolically) induced from B12 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: B14

Elements Cartan subalgebra scaled to act by two by components: B12: (1, 2, 2, 2): 2, (0, -2, -2, -2): 4, A21: (0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: g16, g12+g6, g3+g10
Positive simple generators: g16, g6+g12, g10g3
Cartan symmetric matrix: (210110001)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (220240004)
Decomposition of ambient Lie algebra: Vω1+2ω32V2ω3V2ω2Vω1
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 5) ; the vectors are over the primal subalgebra.g11g1g10+g3g7g15
weightω12ω22ω32ω3ω1+2ω3
Isotypic module decomposition over primal subalgebra (total 5 isotypic components).
Isotypical components + highest weightVω1 → (1, 0, 0)V2ω2 → (0, 2, 0)V2ω3 → (0, 0, 2)Vω1+2ω3 → (1, 0, 2)
Module label W1W2W3W4W5
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g11
g9
g4+g4
2g9
2g11
Semisimple subalgebra component.
g1
g13+g8
g6g12
2g16
2h42h32h2
4h44h34h22h1
2g16
2g12+2g6
2g8+2g13
4g1
Semisimple subalgebra component.
g10g3
2h42h3
2g32g10
g7
g4g4
2g7
g15
g2
g13+g8
g10+g3
g6g12
2g5
2g14
2h4
2g14
2g5
2g122g6
2g32g10
2g82g13
4g2
4g15
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as aboveω1
ω1+2ω2
0
ω12ω2
ω1
2ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
2ω3
0
2ω3
2ω3
0
2ω3
ω1+2ω3
ω1+2ω2+2ω3
ω1
2ω3
ω1+2ω2
ω12ω3
ω12ω2+2ω3
0
ω1+2ω22ω3
ω1+2ω3
ω12ω2
2ω3
ω1
ω12ω22ω3
ω12ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizerω1
ω1+2ω2
0
ω12ω2
ω1
2ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
2ω3
0
2ω3
2ω3
0
2ω3
ω1+2ω3
ω1+2ω2+2ω3
ω1
2ω3
ω1+2ω2
ω12ω3
ω12ω2+2ω3
0
ω1+2ω22ω3
ω1+2ω3
ω12ω2
2ω3
ω1
ω12ω22ω3
ω12ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.Mω1+2ω2Mω1M0Mω1Mω12ω2M2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2M2ω3M0M2ω3M2ω3M0M2ω3Mω1+2ω2+2ω3Mω1+2ω3M2ω3Mω1+2ω3Mω12ω2+2ω3Mω1+2ω2Mω1M0Mω1Mω12ω2Mω1+2ω22ω3Mω12ω3M2ω3Mω12ω3Mω12ω22ω3
Isotypic characterMω1+2ω2Mω1M0Mω1Mω12ω2M2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2M2ω3M0M2ω3M2ω3M0M2ω3Mω1+2ω2+2ω3Mω1+2ω3M2ω3Mω1+2ω3Mω12ω2+2ω3Mω1+2ω2Mω1M0Mω1Mω12ω2Mω1+2ω22ω3Mω12ω3M2ω3Mω12ω3Mω12ω22ω3

Semisimple subalgebra: W_{2}+W_{3}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00)
(0.00, 1.00, 0.00)
0: (1.00, 0.00, 0.00): (300.00, 350.00)
1: (0.00, 1.00, 0.00): (250.00, 350.00)
2: (0.00, 0.00, 1.00): (200.00, 300.00)




Made total 57977 arithmetic operations while solving the Serre relations polynomial system.