Highest vectors of representations (total 5) ; the vectors are over the primal subalgebra. | g11 | g1 | −g10+g3 | g7 | g15 |
weight | ω1 | 2ω2 | 2ω3 | 2ω3 | ω1+2ω3 |
Isotypical components + highest weight | Vω1 → (1, 0, 0) | V2ω2 → (0, 2, 0) | V2ω3 → (0, 0, 2) | Vω1+2ω3 → (1, 0, 2) | ||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | |||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
| |||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | ω1 −ω1+2ω2 0 ω1−2ω2 −ω1 | 2ω2 ω1 −ω1+2ω2 2ω1−2ω2 0 0 −2ω1+2ω2 ω1−2ω2 −ω1 −2ω2 | 2ω3 0 −2ω3 | 2ω3 0 −2ω3 | ω1+2ω3 −ω1+2ω2+2ω3 ω1 2ω3 −ω1+2ω2 ω1−2ω3 ω1−2ω2+2ω3 0 −ω1+2ω2−2ω3 −ω1+2ω3 ω1−2ω2 −2ω3 −ω1 ω1−2ω2−2ω3 −ω1−2ω3 | |||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | ω1 −ω1+2ω2 0 ω1−2ω2 −ω1 | 2ω2 ω1 −ω1+2ω2 2ω1−2ω2 0 0 −2ω1+2ω2 ω1−2ω2 −ω1 −2ω2 | 2ω3 0 −2ω3 | 2ω3 0 −2ω3 | ω1+2ω3 −ω1+2ω2+2ω3 ω1 2ω3 −ω1+2ω2 ω1−2ω3 ω1−2ω2+2ω3 0 −ω1+2ω2−2ω3 −ω1+2ω3 ω1−2ω2 −2ω3 −ω1 ω1−2ω2−2ω3 −ω1−2ω3 | |||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−ω1+2ω2⊕Mω1⊕M0⊕M−ω1⊕Mω1−2ω2 | M2ω2⊕M−ω1+2ω2⊕Mω1⊕M−2ω1+2ω2⊕2M0⊕M2ω1−2ω2⊕M−ω1⊕Mω1−2ω2⊕M−2ω2 | M2ω3⊕M0⊕M−2ω3 | M2ω3⊕M0⊕M−2ω3 | M−ω1+2ω2+2ω3⊕Mω1+2ω3⊕M2ω3⊕M−ω1+2ω3⊕Mω1−2ω2+2ω3⊕M−ω1+2ω2⊕Mω1⊕M0⊕M−ω1⊕Mω1−2ω2⊕M−ω1+2ω2−2ω3⊕Mω1−2ω3⊕M−2ω3⊕M−ω1−2ω3⊕Mω1−2ω2−2ω3 | |||||||||||||||||||||||||||||||||||||||||
Isotypic character | M−ω1+2ω2⊕Mω1⊕M0⊕M−ω1⊕Mω1−2ω2 | M2ω2⊕M−ω1+2ω2⊕Mω1⊕M−2ω1+2ω2⊕2M0⊕M2ω1−2ω2⊕M−ω1⊕Mω1−2ω2⊕M−2ω2 | M2ω3⊕M0⊕M−2ω3 | M2ω3⊕M0⊕M−2ω3 | M−ω1+2ω2+2ω3⊕Mω1+2ω3⊕M2ω3⊕M−ω1+2ω3⊕Mω1−2ω2+2ω3⊕M−ω1+2ω2⊕Mω1⊕M0⊕M−ω1⊕Mω1−2ω2⊕M−ω1+2ω2−2ω3⊕Mω1−2ω3⊕M−2ω3⊕M−ω1−2ω3⊕Mω1−2ω2−2ω3 |